Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
2.
Molecules ; 28(18)2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37764244

RESUMO

The effects of ferrocene (Fc) and ferrocenium (Fc+) induced in triple negative human breast cancer MCF-7 cells were explored by immunofluorescence, flow cytometry, and transmission electron microscopy analysis. The different abilities of Fc and Fc+ to produce reactive oxygen species and induce oxidative stress were clearly observed by activating apoptosis and morphological changes after treatment, but also after tests performed on the model organism D. discoideum, particularly in the case of Fc+. The induction of ferroptosis, an iron-dependent form of regulated cell death driven by an overload of lipid peroxides in cellular membranes, occurred after 2 h of treatment with Fc+ but not Fc. However, the more stable Fc showed its effects by activating necroptosis after a longer-lasting treatment. The differences observed in terms of cell death mechanisms and timing may be due to rapid interconversion between the two oxidative forms of internalized iron species (from Fe2+ to Fe3+ and vice versa). Potential limitations include the fact that iron metabolism and mitophagy have not been investigated. However, the ability of both Fc and Fc+ to trigger different and interregulated types of cell death makes them suitable to potentially overcome the shortcomings of traditional apoptosis-mediated anticancer therapies.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Células MCF-7 , Metalocenos/farmacologia , Apoptose/fisiologia , Ferro/metabolismo , Espécies Reativas de Oxigênio/metabolismo
3.
Dalton Trans ; 52(36): 12677-12685, 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37655459

RESUMO

Platinum (Pt)(II) square planar complexes are well-known anticancer drugs whose Mechanism of Action (MOA) are finely tuned by the polar, hydrophobic and aromatic features of the ligands. In the attempt to translate this tunability to the identification of potential neurodrugs, herein, four Pt(II) complexes were investigated in their ability to modulate the self-aggregation processes of two amyloidogenic models: Sup35p7-13 and NPM1264-277 peptides. In particular, phenanthriplatin revealed the most efficient agent in the modulation of amyloid aggregation: through several biophysical assays, as Thioflavin T (ThT), electrospray ionization mass spectrometry (ESI-MS) and ultraviolet-visible (UV-vis) absorption spectroscopy, this complex revealed able to markedly suppress aggregation and to disassemble small soluble aggregates. This effect was due to a direct coordination of phenanthriplatin to the amyloid, with the loss of several ligands and different stoichiometries, by the formation of π-π and π-cation interactions as indicated from molecular dynamic simulations. Presented data support a growing and recent approach concerning the repurposing of metallodrugs as potential novel neurotherapeutics.


Assuntos
Proteínas Amiloidogênicas , Platina , Platina/farmacologia , Ligantes , Compostos Organoplatínicos/farmacologia
4.
Dalton Trans ; 52(32): 11349-11360, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37530512

RESUMO

The complex [PtCl2(cyclohexane-1R,2R-diamine)] has been combined in a Pt(IV) molecule with two different bioactive molecules (i.e., the histone deacetylase inhibitor 2-propylpentanoic acid or valproic acid, VPA, and the potential antimetastatic molecule 4-isopropenylcyclohexene-1-carboxylic acid or perillic acid, PA) in order to obtain a set of multiaction or multitarget antiproliferative agents. In addition to traditional thermal synthetic procedures, microwave-assisted heating was used to speed up their preparation. All Pt(IV) complexes showed antiproliferative activity on four human colon cancer cell lines (namely HCT116, HCT8, RKO and HT29) in the nanomolar range, considerably better than those of [PtCl2(cyclohexane-1R,2R-diamine)], VPA, PA, and the reference drug oxaliplatin. The synthesized complexes showed pro-apoptotic and pro-necrotic effects and the ability to induce cell cycle alterations. Moreover, the downregulation of histone deacetylase activity, leading to an increase in histone H3 and H4 levels, and the antimigratory activity, indicated by the reduction of the levels of matrix metalloproteinases MMP2 and MMP9, demonstrated the multiaction nature of the complexes, which showed biological properties similar to or better than those of VPA and PA, but at lower concentrations, probably due to the lipophilicity of the combo molecule that increases the intracellular concentration of the single components (i.e., [PtCl2(cyclohexane-1R,2R-diamine)], VPA and PA).


Assuntos
Neoplasias do Colo , Platina/química , Platina/farmacologia , Pró-Fármacos/química , Pró-Fármacos/farmacologia , Diaminas/química , Diaminas/farmacologia , Ácido Valproico/química , Ácido Valproico/farmacologia , Neoplasias do Colo/tratamento farmacológico , Humanos , Linhagem Celular Tumoral , Histona Desacetilases/metabolismo , Movimento Celular/efeitos dos fármacos , Antineoplásicos/química , Antineoplásicos/farmacologia
5.
Apoptosis ; 28(7-8): 1241-1257, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37244884

RESUMO

Malignant primary brain tumors remain among the most difficult cancers to treat, in particular, Glioblastoma Multiforme (GBM) is the deadliest brain tumor. The standard therapies currently used are not efficient enough in improving patients' survival and quality of life. Cisplatin (CDDP), a platinum-based drug, has shown efficacy against different solid neoplasms, but it is also associated to different forms of off-target toxicity. To overcome the limitation in the use of CDDP in the treatment of GBM patients, fourth generation platinum compounds are been synthesized, one of them is the Pt(IV)Ac-POA, a prodrug with a medium-chain fatty acid as axial ligand, which acts as a histone 3 deacetylase inhibitor. Moreover, recently, the antioxidant effects of medicinal mushrooms have been shown to induce a lowering of the toxicity of chemotherapy drugs, inducing greater therapeutic efficiency, thus the combined therapy of chemotherapy and micotherapy could be helpful in the treatment of GBM reducing the adverse effects of the former thanks to phytotherapy's antioxidant, anti-inflammatory, immunomodulatory and antitumoral activities. Here, through immunoblotting, ultrastructural and immunofluorescence analysis, we evaluated the contribution in the activation of different cell death pathway of Micotherapy U-Care, a medicinal blend supplement, used together with platinum-based compounds on human glioblastoma U251 cells.


Assuntos
Antineoplásicos , Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Apoptose , Qualidade de Vida , Morte Celular , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Antineoplásicos Alquilantes/uso terapêutico , Inibidores de Histona Desacetilases/farmacologia , Linhagem Celular Tumoral
7.
Nanotheranostics ; 7(1): 22-40, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36593794

RESUMO

Over the last decades, gold nanoparticles (AuNPs) have proven to be remarkable tools for drug delivery and theranostic applications in cancer treatment. On the other hand, Pt(IV) prodrugs have been employed as an interesting alternative to the more common Pt(II) complexes, such as cisplatin, for cancer chemotherapy. Searching to design an image-guided nanocarrier to deliver selectively Pt(IV) prodrugs to tumors expressing the gastrin releasing peptide receptor (GRPR), we have synthesized small core AuNPs carrying a thiolated DOTA derivative, a GRPR-targeting bombesin analog (BBN[7-14]) and a Pt(IV) prodrug attached to the AuNPs without (AuNP-BBN-Pt1) or with a PEGylated linker (AuNP-BBN-Pt2 and AuNP-BBN-Pt3). In the GRPR+ prostate cancer PC3 cell line, the cytotoxic activity of the designed AuNP-BBN-Pt nanoparticles is strongly influenced by the presence of the PEGylated linker. Thus, AuNP-BBN-Pt1 displayed the lowest IC50 value (9.3 ± 2.3 µM of Pt), which is comparable to that exhibited by cisplatin in the same cell line. In contrast, AuNP-BBN-Pt1 showed an IC50 value of 97 ± 18 µM of Pt in the non-tumoral RWPE-1 prostate cells with a much higher selective index (SI) towards PC3 cells (SI = 10) when compared with cisplatin (SI = 1.3). The AuNPs were also successfully labeled with 67Ga and the resulting 67Ga-AuNP-BBN-Pt were used to assess their cellular uptake in PC3 cells, with AuNP-BBN-Pt1 also displaying the highest cellular internalization. Finally, intratumoral administration of 67Ga-AuNP-BBN-Pt1 in a PC3 tumor-bearing mice showed a prolonged retention of the nanoparticle compared to that of cisplatin, with optimal in vivo stability and 20% of the injected platinum remaining in the tumor after 72 h post-injection. Furthermore, microSPECT imaging studies confirmed the uptake and considerable retention of the 67Ga-labeled AuNPs in the tumors. Overall, these results show the potential of these targeted AuNPs loaded with Pt(IV) prodrugs for prostate cancer theranostics.


Assuntos
Nanopartículas Metálicas , Pró-Fármacos , Neoplasias da Próstata , Humanos , Masculino , Animais , Camundongos , Pró-Fármacos/farmacologia , Ouro , Cisplatino/farmacologia , Nanopartículas Metálicas/química , Receptores da Bombesina/metabolismo , Neoplasias da Próstata/metabolismo , Polietilenoglicóis
8.
Biomed Pharmacother ; 155: 113729, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36166961

RESUMO

Glioblastoma (GBM) is the most common and mortal primary brain tumor in human. After standard therapies, that include surgical resection followed by radiotherapy and chemotherapy, it is difficult to completely remove the tumor and the development of relapses and resistance is almost inevitable. The chemotherapy now available also show important side effects, to overcame those limitation, new platinum-based drugs are being synthetized, Pt(IV)Ac-POA, (OC-6-44)-acetate-diamine-chloride(2-(2-propynyl)octanoato)platinum(IV), a prodrug having an Histone-3-DeAcetylase-Inhibitor as axial ligands, is one of them. Moreover, new compounds of plant origin are increasingly seen as potential sources of benefits in oncological treatments. The aim of the study is to investigate the possible contribution of micotherapy in the fight against GBM, its role in the metabolism of reactive oxygen species (ROS) and its synergic effect with a new platinum-based compound, Pt(IV)Ac-POA, on human glioblastoma U251 cells. Through cytofluorimetric and immunofluorescence analysis, the ability of the micotherapy in study to regulate the cell cycle was assessed, and its importance in controlling the cellular redox state was also revealed, opening to the possibility of a new therapy in which micotherapy can support the activity of new chemotherapy while reducing its side effects controlling inflammatory conditions in the microenvironment. Additionally, the combined therapy appeared able to induce regulated form of necrosis, such as ferroptosis, and to hinder the establishment of resistance mechanisms.


Assuntos
Antineoplásicos , Neoplasias Encefálicas , Glioblastoma , Pró-Fármacos , Humanos , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Pró-Fármacos/farmacologia , Ligantes , Linhagem Celular Tumoral , Cloretos/metabolismo , Histonas , Recidiva Local de Neoplasia/tratamento farmacológico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Inibidores de Histona Desacetilases/uso terapêutico , Diaminas , Neoplasias Encefálicas/patologia , Microambiente Tumoral
9.
Dalton Trans ; 51(15): 6014-6026, 2022 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-35352739

RESUMO

Octahedral Pt(IV) prodrugs are an effective way to combine cisplatin-like moieties and a second drug to obtain selective and stimuli responsive bifunctional antiproliferative compounds. Recently, two bifunctional Pt(IV) complexes have shown interesting in vitro and in vivo effects in glioblastoma, the most aggressive primary brain tumor. An interesting observation indicates that 4,5-dihydroxy-9,10-dioxo-9,10-dihydroanthracene-2-carboxylic acid (rhein) can inhibit in vivo glioma tumor progression. Furthermore, a prodrug in which cisplatin was combined with two molecules of rhein showed a potency higher than that of cisplatin toward cisplatin-resistant lung carcinoma cells. However, the high lipophilicity of this type of complex affects their solubility and bioavailability. To overcome these limits, in the present work, three Pt(IV) derivatives were obtained by differently linking one molecule of rhein and one acetato ligand at the axial position to a cisplatin core. The complexes proved to be similar to or more potent than the parent cisplatin and rhein, and the reference drug temozolomide on two human glioblastoma cell lines (U87-MG and T98G). They retained their activity under hypoxia and caused a significant reduction in the motility of both cell lines, which can be related to their ability to inhibit MMP2 and MMP9 matrix metalloproteinases. Finally, physicochemical and computational studies indicated that these Pt(IV) derivatives are more prone than rhein to cross the blood-brain barrier.


Assuntos
Antineoplásicos , Glioblastoma , Pró-Fármacos , Antraquinonas/farmacologia , Antineoplásicos/química , Linhagem Celular Tumoral , Cisplatino/química , Glioblastoma/tratamento farmacológico , Humanos , Ligantes , Pró-Fármacos/química
10.
Dalton Trans ; 51(6): 2121-2134, 2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-35015025

RESUMO

Platinum(II)-based drugs are widely used for the treatment of solid tumors, especially in combination protocols. Severe side effects and occurrence of resistance are the major limitations to their clinical use. To overcome these drawbacks, a plethora of Pt(IV) derivatives, acting as anticancer prodrugs, have been designed, synthesized and preclinically (often only in vitro) tested. Here, we summarize the recent progress in the development and understanding of the chemical properties and biochemical features of these Pt(IV) prodrugs, especially those containing bioactive molecules as axial ligands, acting as multi-functional agents. Even though no such prodrugs have been yet approved for clinical use, many show encouraging pharmacological profiles. Thus, a better understanding of their features is a promising approach towards improving the available Pt-based anticancer agents.


Assuntos
Pró-Fármacos
11.
Bioinorg Chem Appl ; 2022: 3698391, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36620349

RESUMO

The biological behavior of the axially unsymmetric antitumor prodrug (OC-6-44)-acetatodiamminedichloridohydroxidoplatinum(IV), 2, was deeply investigated and compared with that of analogous symmetric Pt(IV) complexes, namely, dihydroxido 1 and diacetato 3, which have a similar structure. The complexes were tested on a panel of human tumor cell lines. Complex 2 showed an anomalous higher cytotoxicity (similar to that of cisplatin) with respect to their analogues 1 and 3. Their reduction potentials, reduction kinetics, lipophilicity, and membrane affinity are compared. Cellular uptake and DNA platination of Pt(IV) complexes were deeply investigated in the sensitive A2780 human ovarian cancer cell line and in the corresponding resistant A2780cisR subline. The unexpected activity of 2 appears to be related to its peculiar cellular accumulation and not to a different rate of reduction or a different efficacy in DNA platination and/or efficiency in apoptosis induction. Although the exact mechanism of cell uptake is not fully deciphered, a series of naïve experiments indicates an energy-dependent, carrier-mediated transport: the organic cation transporters (OCTs) are the likely proteins involved.

12.
Molecules ; 26(16)2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-34443328

RESUMO

Cisplatin is widely employed as a first-line chemotherapeutic agent for many solid tumors, including malignant pleural mesothelioma (MPM). However, its clinical use is limited by heavy side effects and acquired resistance, the latter being mainly related to enhanced DNA repair. Many clinical trials using combinations of platinum drugs and PARP-1 inhibitors (PARPis) have been carried out, with the hope that such combinations might lead to improved therapeutic efficacy against tumors. Here, the synthesis and efficacy in reducing MPM cell viability of four cisplatin-based Pt(IV) prodrugs containing the PARPi 3-aminobenzamide (3-ABA) fragment are described. The most promising conjugate is more effective than cisplatin or cisplatin/3-ABA combination, administered in equimolar doses, in inhibiting PARP-1 activity and inducing apoptosis in BRCA1/2 wild type MPM cells, grown as monolayer or as multicellular spheroids.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Cisplatino/química , Cisplatino/farmacologia , Mesotelioma Maligno/patologia , Inibidores de Poli(ADP-Ribose) Polimerases/química , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos
13.
Bioinorg Chem Appl ; 2021: 9489926, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34239547

RESUMO

The possibility of spontaneous self-assembly of dicarboxylato Pt(IV) prodrugs and the consequences on their uptake in cancer cells have been evaluated in different aqueous solutions. Four Pt(IV) complexes, namely, (OC-6-33)-diacetatodiamminedichloridoplatinum(IV), Ace, (OC-6-33)-diamminedibutanoatodichloridoplatinum(IV), But, (OC-6-33)-diamminedichloridodihexanoatoplatinum(IV), Hex, and (OC-6-33)-diamminedichloridodioctanoatoplatinum(IV), Oct, have been dispersed in i) milliQ water, ii) phosphate buffered saline, and iii) complete cell culture media (RPMI 1640 or DMEM) containing fetal bovine serum (FBS). The samples have been analyzed by dynamic light scattering (DLS) to measure the size and distribution of the nanoparticles possibly present. The zeta potential offered an indication of the stability of the resulting aggregates. In the case of the most lipophilic compounds of the series, namely, Oct and to a lesser extent Hex, the formation of nanosized aggregates has been observed, in particular at the highest concentration tested (10 µM). The cell culture media had the effect to disaggregate these nanoparticles, mainly by virtue of their albumin content, able to interact with the organic chains via noncovalent (hydrophobic) interactions. For Oct, at the highest concentration employed for the uptake tests (10 µM), the combination between passive diffusion and endocytosis of the self-assembled nanoparticles makes the cellular uptake higher than in the presence of passive diffusion only. During the study of cellular uptake on A2780 ovarian cancer cells pretreated with cytochalasin D, a statistically significant inhibition of endocytosis was observed for Oct. In these experimental conditions, the relationship between uptake and lipophilicity becomes almost linear instead of exponential. Since Oct anticancer prodrug is active at nanomolar concentrations, where the aggregation in culture media is almost abolished, this phenomenon should not significantly impact its antiproliferative activity.

14.
Int J Mol Sci ; 22(6)2021 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-33809522

RESUMO

Herein the effects of three platinum complexes, namely (SP-4-2)-(2,2'-bipyridine)dichloridoplatinum(II), Pt-bpy, (SP-4-2)-dichlorido(1,10-phenanthroline) platinum(II), Pt-phen, and (SP-4-2)-chlorido(2,2':6',2''-terpyridine)platinum(II) chloride, Pt-terpy, on the aggregation of an amyloid model system derived from the C-terminal domain of Aß peptide (Aß21-40) were investigated. Thioflavin T (ThT) binding assays revealed the ability of Pt(II) compounds to repress amyloid aggregation in a dose-dependent way, whereas the ability of Aß21-40 peptide to interfere with ligand field of metal complexes was analyzed through UV-Vis absorption spectroscopy and electrospray ionization mass spectrometry. Spectroscopic data provided micromolar EC50 values and allowed to assess that the observed inhibition of amyloid aggregation is due to the formation of adducts between Aß21-40 peptide and complexes upon the release of labile ligands as chloride and that they can explore different modes of coordination toward Aß21-40 with respect to the entire Aß1-40 polypeptide. In addition, conformational studies through circular dichroism (CD) spectroscopy suggested that Pt-terpy induces soluble ß-structures of monomeric Aß21-40, thus limiting self-recognition. Noticeably, Pt-terpy demonstrated the ability to reduce the cytotoxicity of amyloid peptide in human SH-SY5Y neuroblastoma cells. Presented data corroborate the hypothesis to enlarge the application field of already known metal-based agents to neurodegenerative diseases, as potential neurodrugs.


Assuntos
Peptídeos beta-Amiloides/química , Fragmentos de Peptídeos/química , Platina/farmacologia , Agregados Proteicos/efeitos dos fármacos , Sequência de Aminoácidos , Benzotiazóis/metabolismo , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Fluorescência , Humanos , Platina/química , Estabilidade Proteica , Solubilidade , Espectrofotometria Ultravioleta , Fatores de Tempo
15.
Front Neurosci ; 15: 589906, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33828444

RESUMO

Glioblastoma (GBM) is the most common tumor of the central nervous system. Current therapies, often associated with severe side effects, are inefficacious to contrast the GBM relapsing forms. In trying to overcome these drawbacks, (OC-6-44)-acetatodiamminedichlorido(2-(2-propynyl)octanoato)platinum(IV), also called Pt(IV)Ac-POA, has been recently synthesized. This new prodrug bearing as axial ligand (2-propynyl)octanoic acid (POA), a histone deacetylase inhibitor, has a higher activity due to (i) its high cellular accumulation by virtue of its high lipophilicity and (ii) the inhibition of histone deacetylase, which leads to the increased exposure of nuclear DNA, permitting higher platination and promoting cancer cell death. In the present study, we investigated the effects induced by Pt(IV)Ac-POA and its potential antitumor activity in human U251 glioblastoma cell line using a battery of complementary techniques, i.e., flow cytometry, immunocytochemistry, TEM, and Western blotting analyses. In addition, the synergistic effect of Pt(IV)Ac-POA associated with the innovative oncological hadrontherapy with carbon ions was investigated, with the aim to identify the most efficient anticancer treatment combination. Our in vitro data demonstrated that Pt(IV)Ac-POA is able to induce cell death, through different pathways, at concentrations lower than those tested for other platinum analogs. In particular, an enduring Pt(IV)Ac-POA antitumor effect, persisting in long-term treatment, was demonstrated. Interestingly, this effect was further amplified by the combined exposure to carbon ion radiation. In conclusion, Pt(IV)Ac-POA represents a promising prodrug to be incorporated into the treatment regimen for GBM. Moreover, the synergistic efficacy of the combined protocol using chemotherapeutic Pt(IV)Ac-POA followed by carbon ion radiation may represent a promising approach, which may overcome some typical limitations of conventional therapeutic protocols for GBM treatment.

16.
Dalton Trans ; 50(13): 4663-4672, 2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33725031

RESUMO

The Pt(iv) complexes based on (SP-4-2)-dichlorido(cyclohexane-1,4-diamine)platinum(ii) (kiteplatin) and the histone deacetylase inhibitor 2-(2-propynyl)octanoic acid (POA) were investigated. Since POA contains a chiral carbon, all the possible Pt(iv) isomers were prepared and characterized, and their antiproliferative activity on six cancer cell lines was compared with that of the corresponding Pt(iv) complexes containing the cyclohexane-1R,2R-diamine equatorial ligand. To justify the very good antiproliferative activity (nanomolar IC50), the polarity, lipophilicity, permeability, and cell accumulation of the complexes were studied. Overall, the two series of Pt(iv) complexes showed similar cell penetration properties, being significantly better than that of the Pt(ii) reference compounds. Finally, a representative compound of the whole set of complexes (i.e., that based on cyclohexane-1R,2R-diamine and racemic POA) was tested in vivo on mice bearing Lewis lung carcinoma, showing good tumor growth inhibition with negligible body weight loss.


Assuntos
Antineoplásicos/farmacologia , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/metabolismo , Compostos Organoplatínicos/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Caprilatos/química , Caprilatos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cicloexanos/química , Cicloexanos/farmacologia , Diaminas/química , Diaminas/farmacologia , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Inibidores de Histona Desacetilases/síntese química , Inibidores de Histona Desacetilases/química , Humanos , Ligantes , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estrutura Molecular , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/patologia , Compostos Organoplatínicos/síntese química , Compostos Organoplatínicos/química , Relação Estrutura-Atividade
17.
Dalton Trans ; 50(9): 3161-3177, 2021 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-33595015

RESUMO

Two Pt(iv) conjugates containing one or two molecules of perillic acid (4-isopropenylcyclohexene-1-carboxylic acid), an active metabolite of limonene, were synthesized both with traditional and microwave-assisted methods and characterized. Their antiproliferative activity was tested on a panel of human tumor cell lines. In particular, cis,cis,trans-[PtIVCl2(NH3)2(perillato)2] exhibited excellent antiproliferative and antimetastatic activity on A-549 lung tumor cells at nanomolar concentrations. A number of in vitro biological tests were performed to decipher some aspects of its mechanism of action, including transwell migration and invasion as well as wound healing assay.


Assuntos
Antineoplásicos/farmacologia , Compostos Organoplatínicos/farmacologia , Pró-Fármacos/farmacologia , Células A549 , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Compostos Organoplatínicos/síntese química , Compostos Organoplatínicos/química , Pró-Fármacos/síntese química , Pró-Fármacos/química , Estereoisomerismo , Relação Estrutura-Atividade
18.
Neurotox Res ; 37(1): 183-197, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31240667

RESUMO

Gliomas are the most frequent primary tumours of the nervous system, characterised by high degree of malignancy, widespread invasion and high-rate proliferation. Cisplatin and analogue are currently employed in clinical trials as active chemotherapeutic agents for the systemic treatment of this type of malignancy. Despite therapy benefits, clinical use of these agents is hampered by severe side effects including neurotoxicity. Therefore, the aim of the present study was to analyse the effect of a new compound of platinum(IV) conjugate, named Pt(IV)Ac-POA, which can generate a synergistic antineoplastic action when released along with cisplatin, after a specific reduction reaction within tumour cells. To assess the effects of the novel compound on rat C6 glioma cells, cell cycle and cell death activation analyses were carried out using flow cytometry. Morphological changes and activation of different cell death pathways were evaluated by both transmission electron microscopy and immunofluorescence microscopy. Protein expression was investigated by western blotting analysis. The novel compound Pt(IV)Ac-POA, bearing as axial ligand (2-propynyl)octanoic acid (POA), which is a histone deacetylase inhibitor (HDACi), acts as a prodrug in tumour cells, inducing cell death through different pathways at a concentration lower than those tested for other platinum analogues. The current results showed that Pt(IV)Ac-POA could represent a promising improvement of Pt-based chemotherapy against gliomas, either inducing a chemosensitisation and reducing chemoresistance.


Assuntos
Antineoplásicos/farmacologia , Morte Celular/efeitos dos fármacos , Glioblastoma/patologia , Pró-Fármacos/farmacologia , Animais , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência , Estrutura Molecular , Ratos
19.
Int J Mol Sci ; 20(12)2019 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-31238499

RESUMO

Cisplatin and several non-steroidal anti-inflammatory drugs (NSAIDs) have been proven to act synergistically or at least additively on several tumor cell lines. Dual-action cisplatin-based Pt(IV) combos containing ketoprofen and naproxen offer good antiproliferative performance on a panel of human tumor cell lines, including a malignant pleural mesothelioma (MPM) one, a very chemoresistant tumor. The main reason of the increased activity relies on the enhanced lipophilicity of these Pt(IV) conjugates that in turn promotes increased cellular accumulation. A quick Pt(IV)→Pt(II) reduction generates the active cisplatin metabolite. The NSAID adjuvant action seems to be almost independent from cyclooxygenase-2 (COX-2) expression in the tumor cells under investigation (lung A-549, colon HT-29, HCT 116, SW480, ovarian A2780, and biphasic MPM MSTO-211H), but it seems to rely (at least in part) on the activation of the NSAID activated gene, NAG-1 (a member of the transforming growth factor beta, TGF-ß, superfamily), which has been suggested to be involved in NSAID antiproliferative activity.


Assuntos
Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Cetoprofeno/química , Cetoprofeno/farmacologia , Naproxeno/química , Naproxeno/farmacologia , Compostos Organoplatínicos/química , Compostos Organoplatínicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Concentração Inibidora 50 , Estrutura Molecular , Pró-Fármacos/química , Pró-Fármacos/farmacologia
20.
J Med Chem ; 62(7): 3395-3406, 2019 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-30879295

RESUMO

The synthesis, characterization, and in vitro activity of a cyclohexane-1 R,2 R-diamine-based Pt(IV) derivative containing the histone deacetylase inhibitor rac-2-(2-propynyl)octanoato, namely, ( OC-6-44)-acetatodichlorido(cyclohexane-1 R,2 R-diamine)( rac-2-(2-propynyl)octanoato)platinum(IV), are reported together with those of its isomers containing enantiomerically enriched axial ligands. These Pt(IV) complexes showed comparable activity, of 2 orders of magnitude higher than reference drug oxaliplatin on three human (HCT 116, SW480, and HT-29) and one mouse (CT26) colon cancer cell lines. In vivo experiments were carried out on immunocompetent BALB/c mice bearing the same syngeneic tumor. The complex ( OC-6-44)-acetatodichlorido(cyclohexane-1 R,2 R-diamine)( rac-2-(2-propynyl)octanoato)platinum(IV) showed higher tumor mass Pt accumulation than oxaliplatin, due to its higher lipophilicity, with negligible nephro- and hepatotoxicities when administered intravenously. A remarkable tumor mass invasion by cytotoxic CD8+ T lymphocytes, following the Pt(IV) treatment, indicated a strong induction of immunogenic cell death.


Assuntos
Antineoplásicos/farmacologia , Caprilatos/química , Neoplasias do Colo/patologia , Morte Celular Imunogênica/efeitos dos fármacos , Compostos Organoplatínicos/química , Compostos Organoplatínicos/farmacologia , Pró-Fármacos/farmacologia , Animais , Antineoplásicos/química , Antineoplásicos/farmacocinética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Xenoenxertos , Humanos , Ligantes , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Compostos Organoplatínicos/farmacocinética , Pró-Fármacos/química , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA